Fandom

巨大数研究 Wiki

下位階乗

548このwikiの
ページ数
新しいページをつくる
コメント0 シェアする

下位階乗または左階乗とは、\(!n\)と書かれ、n個の物を、全ての物が元の位置にはないように並べ替える方法である。(「攪乱階乗」として知られる)[1]これにはいくらかの公式がある:

\begin{eqnarray*} !n &=& n! \cdot \displaystyle\sum^{n}_{i = 0} \frac{(-1)^i}{i!}\\ &=& \displaystyle\sum^{n}_{i = 0} i! \cdot (-1)^{n - i} \cdot \binom{n}{i}\\ &=& \displaystyle\frac{\Gamma(n + 1, -1)}{e}\\ &=& \left[\frac{n!}{e}\right] \end{eqnarray*}

ここで、[n]はガウス記号である。

!n の値は n = 0, 1, 2, 3, 4, 5,... に対し 1, 0, 1, 2, 9, 44, 265, 1854, 14833, ...である。

10進法では、その桁の下位階乗の和が元の数と等しい数は1つのみ、148349である:148349 = !1 + !4 + !8 + !3 + !4 + !9

疑似コード 編集

// 通常の階乗
function factorial(z):
    result := 1
    for i from 1 to z:
        result := result * i
    return result

// 下位階乗
function subfactorial(z):
    return floor(factorial(z) / e + 0.5)

出典 編集

  1. [1]

広告ブロッカーが検出されました。


広告収入で運営されている無料サイトWikiaでは、このたび広告ブロッカーをご利用の方向けの変更が加わりました。

広告ブロッカーが改変されている場合、Wikiaにアクセスしていただくことができなくなっています。カスタム広告ブロッカーを解除してご利用ください。

Fandomでも見てみる

おまかせWiki