FANDOM


ビッグブーワ (big boowa) は BEAF で \( \lbrace 3,3,3 / 2 \rbrace \) と等しい数である[1]Jonathan Bowers が名付けた巨大数の中で、レギオン配列を使って書かれる最も小さい数である。ビッグブーワの上位関数としては Great big boowa {3,3,4/2} や Grand boowa {3,2,2,2/2} などがある。ビッグブーワはふぃっしゅ数バージョン6より大きくバージョン4より小さい。

計算 編集

  1. a1 = 3 とする。
  2. a2 = 3&3&3 (トリアクルス) とする。
  3. a3 = 3&3&...&3&3 (a2 個の3) とする(3&3&..(トリアクルス回)..3&3)。
  4. an = 3&3&...&3&3 (an - 1 個の3) として続ける。
  5. ビッグブーワは aa3(つまりa3&3&..(トリアクルス回)..3&3)である。

近似 編集

表記 近似
U関数 \(U^{U^3(3)}(3)\)
超階乗配列表記 \(3![3(1)[_{[1]}1]]\)
急増加関数 \(f_{\vartheta(\Omega_{\omega})+2}(3)\)
ハーディー階層 \(H_{\vartheta(\Omega_{\omega})\omega^2}(3)\)
緩成長階層 \(g_{\vartheta(\Omega_{\Omega}+1)}(3)\)

出典 編集

  1. Bowers, JonathanInfinity Scrapers. Retrieved January 2013.

広告ブロッカーが検出されました。


広告収入で運営されている無料サイトWikiaでは、このたび広告ブロッカーをご利用の方向けの変更が加わりました。

広告ブロッカーが改変されている場合、Wikiaにアクセスしていただくことができなくなっています。カスタム広告ブロッカーを解除してご利用ください。

FANDOMでも見てみる

おまかせWiki