Fandom

巨大数研究 Wiki

チェーン表記

549このwikiの
ページ数
新しいページをつくる
コメント4 シェアする
チェーン表記
多次元
基本関数 ハイパー演算子
急増加関数 \(f_{\omega^2}(n)\)

チェーン表記 (Chained arrow notation) は、ジョン・ホートン・コンウェイとガイによる矢印表記の一般化である[1][2][3][4]多変数アッカーマン関数はチェーン表記よりも大きい。また、バードの証明によれば、Jonathan Bowers配列表記はチェーン表記よりも大きな値となる。

定義 編集

以下の4つのルールで計算ができる。

ルール1: \(a \rightarrow b \rightarrow c = a\underbrace{\uparrow\ldots\uparrow}_cb\) (矢印表記を使用)

ルール2: 最後の数字が1の時は、取り除くことができる。 \(a \rightarrow\ldots\rightarrow b \rightarrow 1 = a \rightarrow\ldots\rightarrow b\)

ルール3: \(a \rightarrow\ldots\rightarrow b \rightarrow 1 \rightarrow c = a \rightarrow\ldots\rightarrow b\)

ルール4: \(a \rightarrow\ldots\rightarrow b \rightarrow (c + 1) \rightarrow (d + 1) = a \rightarrow\ldots\rightarrow b \rightarrow (a \rightarrow\ldots\rightarrow b \rightarrow c \rightarrow (d + 1) ) \rightarrow d\)

なお、ルール1を以下のルール1'に変えても同じである[5]

ルール1': \(a \rightarrow b = a^b\)

CG 関数 編集

コンウェイとグイは、チェーン表記を使って \(cg(n) = \underbrace{n \rightarrow n \rightarrow \ldots \rightarrow n \rightarrow n}_n\). という関数を定義した。

この関数の増加率は、急増加関数で \(f_{\omega^2}(n)\) であり、多変数アッカーマン関数では A(1,0,0,n) に相当する。

Peter Hurford の拡張 編集

Peter Hurford は、チェーン表記に次のルールを加えることで拡張した拡張チェーン表記を考案した[6]

\(a \rightarrow_c b = \underbrace{a \rightarrow_{c-1} a \rightarrow_{c-1}\ldots\rightarrow_{c-1} a \rightarrow_{c-1}a}_{b個の \rightarrow_{c-1}}\)

他のチェーンの規則は、そのままであり、→の下についている数字を無視して計算できる。したがって、 \(3 \rightarrow_{2} 3 \rightarrow 3\) のような表記はできない。つまり、矢印のタイプ(→の下についている数字)は、1通りでなければならない。さらに、Hurford は \(f(n) = n \rightarrow_n n\) が急増加関数で \(f_{\omega^3}(n)\) 程度であることを示した[7]

さらに、彼は C(n) 関数を次のように定義した。

\(C(a) = a \rightarrow_a a\)

\(C(a,1) = a \rightarrow_{C(a)} a\)

\(C(a,b) = a \rightarrow_{C(a,b-1)} a\)

\(C(a,1,1) = C(a,C(a,a))\)

\(C(a,b,1) = C(a,C(a,b-1,1))\)

\(C(a,1,c) = C(a,C(a,a,c-1),c-1)\)

\(C(a,b,c) = C(a,C(a,b-1,c),c-1)\)

\(f(n) = C(n,n,n)\) 関数は、急増加関数で \(f_{\omega^3 + \omega}(n)\) 程度の増加速度となる。

プログラム 編集

チェーン表記の計算を実行するプログラムが書かれている[8][9]

動画 編集

1. 出典: チェーン表記・Ⅰ

2. 出典: チェーン表記・II

3. 出典: チェーン表記・III

出典 編集

  1. Conway, John Horton. (1995) Book of Numbers PDF
  2. J.H.コンウェイ、R.K.ガイ 『数の本』 根上生也訳、シュプリンガー・フェアラーク東京, 2001年12月
  3. Chained Arrow Notation
  4. コンウェイのチェーン表記 (Wikipedia)
  5. チェーンと矢印表記の関係
  6. Hurford, Peter. Large Numbers, Part 2: Graham and Conway. Retrieved 2015-03-28.
  7. Hurford, Peter. Large Numbers, Part 3: Functions and Ordinals. Retrieved 2013-04-02.
  8. 全宇宙の素粒子の数を超えて…C++で巨大数に挑戦! (株式会社CFlatの明後日スタイルのブログ)
  9. [1]

関連項目 編集

広告ブロッカーが検出されました。


広告収入で運営されている無料サイトWikiaでは、このたび広告ブロッカーをご利用の方向けの変更が加わりました。

広告ブロッカーが改変されている場合、Wikiaにアクセスしていただくことができなくなっています。カスタム広告ブロッカーを解除してご利用ください。

Fandomでも見てみる

おまかせWiki